AP[®] CHEMISTRY 2007 SCORING GUIDELINES (Form B)

Question 1

A sample of solid U_3O_8 is placed in a rigid 1.500 L flask. Chlorine gas, $Cl_2(g)$, is added, and the flask is heated to 862°C. The equation for the reaction that takes place and the equilibrium-constant expression for the reaction are given below.

$$U_3O_8(s) + 3 Cl_2(g) \rightleftharpoons 3 UO_2Cl_2(g) + O_2(g)$$
 $K_p = \frac{(p_{UO_2Cl_2})^3 (p_{O_2})^3}{(p_{O_1})^3}$

When the system is at equilibrium, the partial pressure of $Cl_2(g)$ is 1.007 atm and the partial pressure of $UO_2Cl_2(g)$ is 9.734×10^{-4} atm.

(a) Calculate the partial pressure of $O_2(g)$ at equilibrium at 862°C.

$$U_{3}O_{8}(s) + 3 Cl_{2}(g) \rightleftharpoons 3 UO_{2}Cl_{2}(g) + O_{2}(g)$$

$$I --- ? 0 0 C$$

$$E 1.007 \text{ atm } 9.734 \times 10^{-4} \text{ atm } ?$$

$$9.734 \times 10^{-4} \text{ atm } UO_{2}Cl_{2}(g) \times \frac{(1 \text{ mol } O_{2})}{(3 \text{ mol } UO_{2}Cl_{2})} = 3.245 \times 10^{-4} \text{ atm } O_{2}(g)$$
One point is earned for the correct answer.

(b) Calculate the value of the equilibrium constant, K_p , for the system at 862°C.

$K_p = \frac{(p_{\text{UO}_2\text{Cl}_2})^3(p_{\text{O}_2})}{(p_{\text{Cl}_2})^3} = \frac{(9.734 \times 10^{-4})^3(3.245 \times 10^{-4})}{(1.007)^3} = 2.931 \times 10^{-13}$	One point is earned for the correct substitution.
	One point is earned for the correct answer.

(c) Calculate the Gibbs free-energy change, ΔG° , for the reaction at 862°C.

$\Delta G^{\circ} = -RT \ln K_p$	One point is earned for the correct setup.
= $(-8.31 \text{ J mol}^{-1} \text{ K}^{-1})((862+273) \text{ K})(\ln (2.931 \times 10^{-13}))$	One point is earned for the correct answer with units.
= 272,000 J mol ⁻¹ = 272 kJ mol ⁻¹	

© 2007 The College Board. All rights reserved.

Visit apcentral.collegeboard.com (for AP professionals) and www.collegeboard.com/apstudents (for students and parents).

AP[®] CHEMISTRY 2007 SCORING GUIDELINES (Form B)

Question 1 (continued)

(d) State whether the entropy change, ΔS° , for the reaction at 862°C is positive, negative, or zero. Justify your answer.

 ΔS° is <u>positive</u> because four moles of gaseous products are produced from three moles of gaseous reactants. One point is earned for the correct explanation.

(e) State whether the enthalpy change, ΔH° , for the reaction at 862°C is positive, negative, or zero. Justify your answer.

Both ΔG° and ΔS° are positive, as determined in parts (c) and (d). Thus, ΔH° must be positive because ΔH° is the sum of two positive	One point is earned for the correct sign.
terms in the equation $\Delta H^{\circ} = \Delta G^{\circ} + T \Delta S^{\circ}$.	One point is earned for a correct explanation.

(f) After a certain period of time, 1.000 mol of $O_2(g)$ is added to the mixture in the flask. Does the mass of $U_3O_8(s)$ in the flask increase, decrease, or remain the same? Justify your answer.

The mass of $U_3O_8(s)$ will <u>increase</u> because the reaction is at equilibrium, and the addition of a product creates a "stress" on the product (right) side of the reaction. The reaction will then proceed from right to left to reestablish equilibrium so that some $O_2(g)$ is consumed (tending to relieve the stress) as more $U_3O_8(s)$ is produced.	One point is earned for a correct explanation.
--	--